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Abstract
This paper proposes some new moment conditions under the assumption of the equidispersion in 
count  panel  data  model.  These  are  obtained  by  using  the  association  between  variances  and 
covariances in the disturbance. Some Monte Carlo experiments configured for the Poisson model 
show  that  the  GMM  estimators  using  the  new  moment  conditions  perform  better  than  the 
conventional quasi-differenced GMM estimator and some gains are recognized in using the new 
moment conditions.

Keywords:  count  panel  data,  linear  feedback  model,  equidispersion,  implicit  operation,  cross-
linkage moment conditions, GMM, Monte Carlo experiments
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1. Introduction
Assuming the equidispersion is a traditional way in count panel data model. It implies the equality 
of mean and variance of the dependent variable, which is characteristic of the Poisson regression. 
Hausman et al. (1984) use the Poisson conditional maximum likelihood estimator (CMLE) with the 
intention of analyzing count panel data, taking the fixed effect into consideration. However, this 
estimator is consistent only for the model with strictly exogenous explanatory variables and no 
dynamics, when number of individuals is large and number of time periods is small. In addition, the 
CMLE is identical to the ordinary maximum likelihood estimator for the Poisson model and further 
results  in  the  within  group  (WG)  mean  scaling  estimator,  which  requires  no  distributional 
assumption,  not to mention the assumption of the equidispersion (see Blundell  et  al.,  2002 and 
Lancaster, 2002). After all, the traditional and famous estimators for the case of strictly exogenous 
explanatory variables in count panel data model necessitate no assumption of the equidispersion.

In count panel data model, it is much acceptable to regard the explanatory variables as being 
predetermined  instead  of  being  strictly  exogenous.  In  the  case  of  assuming  the  predetermined 
explanatory variables, the generalized method of moments (GMM) estimators proposed by Hansen 
(1982) are exclusively utilized by using the moment conditions proposed by Chamberlain (1992), 
Wooldridge (1997), Windmeijer (2000), Blundell et al. (2002) and Kitazawa (2007), except for the 
case  where the pre-sample mean (PSM) estimator  proposed by Blundell  et  al.  (1999,  2002)  is 
usable. However, no moment condition is proposed associated with the equidispersion, except for 
Kitazawa (2007).

As stated above, the discussion on the equidispersion has been substantively neglected in the 
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mainstream  of  count  panel  data  model.1 However,  it  is  conceivable  that  the  examination  of 
probability distributions for count dependent variables is meaningful for the development of count 
panel  data  econometrics.  Whether  or  not  the  equidispersion  is  acceptable  has  not  been  fully 
corroborated in count panel data model incorporating individual effects (and time dummies). To 
contribute  to  the  advancement  of  the discussion on the  equidispersion,  this  paper  proposes  the 
newly reformed moment  conditions  associated with the equidispersion in  the framework of the 
linear feedback model (LFM) proposed by Blundell et al. (2002).

Although some moment conditions associated with the equidispersion are proposed by Kitazawa 
(2007), this paper proposes some new moment conditions associated with the equidispersion, which 
are obtained by setting up relationships between variances and covariances in the disturbances in 
the LFM. The new moment conditions are referred to as the "cross-linkage moment conditions" in 
this paper, named after the construction of the bridge between variances and covariances in the 
disturbances. Then, the implicit operation proposed  by Kitazawa (2007) is used for the construction 
of the cross-linkage moment conditions.2 The advantage of the new moment conditions is that they 
contain a large number of moment conditions linear with respect to the coefficient on lagged count 
dependent variables in the LFM.

The Monte Carlo experiments are carried out in the same configuration as in Blundell  et  al. 
(2002), except for the setting of the initial condition of dependent variables. The experiments show 
that  the  GMM  estimators  using  the  newly  proposed  moment  conditions  associated  with  the 
equidispersion  perform well,  especially  compared  to  the  conventional  quasi-differenced  GMM 
estimator.

The  paper  is  organized  as  follows.  In  section  2,  the  cross-linkage  moment  conditions  are 
proposed. In section 3, some Monte Carlo experiments investigate the small sample properties of 
the GMM estimators using the cross-linkage moment conditions. Section 4 concludes.

2. Model, moment conditions and GMM estimators
In this section, the new sets of the moment conditions associated with the equidispersion for the 
linear feedback model (LFM) proposed by Blundell et al. (2002) in count panel data are proposed 
for the three cases: the case of predetermined explanatory variables, the case of strictly exogenous 
explanatory variables and the case of mean-stationary dependent variables. The method of deriving 
these sets is based on the implicit operation proposed by Kitazawa (2007). The GMM estimators are 
constructed by using the cross-linkage moment conditions. 

2.1. Linear feedback model
A simple form of the linear feedback model (LFM) proposed by Blundell et al. (2002) is as follows:

yit= yi , t−1exp  xitivit , for t=2, , T , (2.1.1)

where the  subscript  i  denotes  the  individual  unit  with  i=1, , N ,  t  denotes  the  time 
period and it is assumed that T  is fixed and N ∞ . The count dependent variable yit  is 
able to have zero or positive integer values and the explanatory variable xit  is able to have the 
real number. The unobservable variables i  and vit  are the individual specific effect and the 
disturbance respectively. The parameters of interest are   (with ∣∣1 ) and  .

Equation (2.1.1)  is rewritten as follows:

1 The discussion on the overdispersion is conducted since Hausman et al. (1984).
2 In the context of the ordinary dynamic panel data model, Ahn (1990) and Ahn and Schmidt (1995) propose the 

method of constructing the efficient sets of the moment conditions. The implicit operation is developed for the 
purpose of incorporating their method into count panel data model.
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yit= yi , t−1uit , for t=2, , T , (2.1.2)

uit=iitvit , for t=2, , T , (2.1.3)

where  i=exp i  and  it=exp  xit .  Based  on  (2.1.2),  it  can  be  seen  that  uit  is 
observable  in  the  sense  that  it  is  written  in  terms  of  data  and  parameter.  That  is, 

uit= yit− yi , t−1 , which is plugged into the moment conditions to be hereinafter described.

2.2. Case of predetermined explanatory variables
In this case, the assumption on the disturbance vit  is

E [vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 , for t=2, , T , (2.2.1)

where vi
t−1=vi1 , , vi , t−1  and xi

t=xi1 , , xit  . The assumption (2.2.1) is referred to as 
the “original assumption” for the case of predetermined explanatory variables. Kitazawa (2007) 
constructs the implicit standard assumptions from the original assumption (2.2.1) as follows:

E [ yi1 vit ∣ yi1 ,i , vi
t−1 , x i

t ]=0 , (2.2.2)

E [vis vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 , for 2≤s≤t−1 , (2.2.3)

E [ xis vit ∣ yi1 ,i , vi
t−1 , x i

t ]=0 , for 1≤s≤t , (2.2.4)

E [i vit ∣ yi1 ,i , vi
t−1 , xi

t ]=0 . (2.2.5)

Here, the following assumption with respect to the equidispersion is imposed in addition to the 
implicit standard  assumptions (2.2.2) – (2.2.5):

E [vit
2− yit ∣ yi1 ,i , vi

t−1 , xi
t ]=0 , for t=2, , T . (2.2.6)

Using  the  assumptions  (2.2.2)  –  (2.2.6)  (and  quoting  the  original  assumption  (2.2.1) 
sporadically),  new  types  of  moment  conditions  based  on  the  relationships  holding  between 
variances and covariances in the disturbances are proposed in addition to the conventional quasi-
differenced moment conditions proposed by  Chamberlain (1992) and Wooldridge (1997)  for the 
case of predetermined explanatory variables in this section. The line of constructing the moment 
conditions in manner of Kitazawa (2007) is sketched as below.

According to Kitazawa (2007), the observable analogues for (2.2.2), (2.2.3), (2.2.4), and (2.2.6) 
are obtained by replacing the unobservable variables vit  by the observable variables uit :

E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

t ]= yi1iit , (2.2.7)

E [uisuit ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2isitvisiit , for 2≤s≤t−1 , (2.2.8)
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E [ xis uit ∣ yi1 ,i , vi
t−1 , xi

t ]=xisiit , for 1≤s≤t , (2.2.9)

E [uit
2− yit  ∣ yi1 ,i , vi

t−1 , xi
t ]=i

2 it
2

, (2.2.10)

respectively.
Using the observable analogues (2.2.7) – (2.2.10), the relationships holding among yi1 uit  for 

t=2, ,T ,  among  uis uit  for  s=2, , t  and  t=2, ,T  and   among  xis uit  for 
s=1, , t  and  t=2, ,T  are  solved  through  the  intermediary  of  the  unconditional 

expectation operator after weighting them with appropriate transformations of explanatory variables 
xit  for t=1, , T . With the intention of ruling out the redundancies of the moment conditions 

to be constructed, condensed full sets of the relationships above are used to construct a lean set of 
the moment conditions. 

A condensed full set of the relationships among yi1 uit  for t=2, , T  is composed of the 
relationships between yi1 ui , t−1  and yi1 uit  for t=3, , T . The other relationships among 

yi1 uit  for  t=2, , T  are indirectly traced based on the trunk connections by exploiting the 
condensed full set.

In  addition,  a  condensed  full  set  of  the  relationships  among  uis uit  for  s=2, , t  and 
t=2, ,T  is  composed  of  the  relationships  between  uis ui , t−1  and  uis uit  for 
s=2, , t−1  and  t=3, , T  and  the  relationships  between  ui ,t−1uit  and  uit

2  for 
t=3, , T .  The  other  relationships  among  uis uit  for  s=2, , t  and  t=2, ,T  are 

indirectly traced based on the trunk connections by exploiting the condensed full set.
Both  relationships  between  yi1 ui , t−1  and  yi1 uit  for  t=3, , T  and  between 

uis ui , t−1  and u is uit  for s=2, , t−2  and t=4, ,T  are solved by Kitazawa (2007) in 
order  to  construct  the  T−2T −1/2  moment  conditions  based  on  the  product  of  the 
(observable)  instrument  variables  and  the  quasi-differenced  transformation  proposed  by 
Chamberlain (1992) and Wooldridge (1997), which are regarded as the application to the LFM by 
Blundell et al. (2002). That is,

E [ yisi ,t−1 /it uit−ui , t−1]=0 , for s=1, , t−2 ; t=3, , T , (2.2.11)

which hold even if the assumption (2.2.6) is not imposed.
Accordingly,  in  this  paper,  the  relationships  between  ui ,t−1

2  and  ui ,t−1uit  for 

t=3, , T  and the relationships between u i ,t−1uit  and uit
2  for t=3, , T  are solved in 

order to construct the moment conditions valid for the case of predetermined explanatory variables. 
These moment conditions are referred to  as the cross-linkage moment conditions in this  paper, 
because they represent the relationships bridging between the observable analogues of variances of 

vit  and the observable analogues of covariances of vit  in the case of the equidispersion.
Further,  the  T−1T / 2−1  moment  conditions  based  on  a  condensed  full  set  of  the 

relationships among  xis uit  for  s=1, , t  and  t=2, ,T  are found by Kitazawa (2007). 
They are

E [ xisi , t−1/it u it−ui , t−1]=0 , for s=1, , t−1 ; t=3, , T , (2.2.12)
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which  are  obtained  by  solving  the  relationships  between  xis ui ,t−1  and  xis uit  for 
s=1, , t−1  and t=3, , T . These moment conditions are also those based on the product 

of  the  (observable)  instrument  variables  and  the  quasi-differenced  transformation  proposed  by 
Chamberlain (1992) and Wooldridge (1997).

From now  on,  two  types  of  the  cross-linkage  moment  conditions  are  solved  by  using  the 
relationships between ui ,t−1

2  and  ui ,t−1 uit  for  t=3, , T  and the relationships between 
ui ,t−1uit  and uit

2  for t=3, , T . 
First,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved between  ui ,t−1
2  and ui ,t−1uit  (weighted with i ,t−1 /it ). Multiplying both sides 

of (2.2.8) for s=t−1  by i ,t−1 /it  gives

E [ui ,t−1 i ,t−1 /it uit ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2i ,t−1

2 vi ,t−1ii , t−1 . (2.2.13)

Applying the law of total expectation to (2.2.10) dated t−1  and (2.2.13), it follows that

E [ui , t−1
2 − yi ,t−1]=E [i

2 i , t−1
2 ] , (2.2.14)

E [ui ,t−1 i ,t−1 /it uit ]=E [i
2i ,t−1

2 ] . (2.2.15)

Subtracting (2.2.14) from (2.2.15) gives

E [ui ,t−1 i , t−1/it uit−ui , t−1 yi , t−1]=0 . (2.2.16)

At this stage, creating the recursive equations

E [ yi ,t−1 i , t−1/it u it−ui , t−1]

=E [ yi , t−2 i , t−1/itu it−u i , t−1]E [u i ,t−1 i , t−1 /it uit−ui , t−1]
(2.2.17)

from (2.1.2) dated t−1  and applying the moment conditions (2.2.11) for s=t−2 , it can be 
seen that the following relationships hold:

E [ui ,t−1 i , t−1/it uit−ui , t−1]=E [ yi , t−1i ,t−1 /it uit−u i ,t−1] . (2.2.18)

Accordingly,  plugging (2.2.18) into (2.2.16) gives the following  T−2  cross-linkage moment 
conditions:

E [ yi ,t−1 i , t−1/it uit−ui ,t−1−1]=0 , for t=3, , T , (2.2.19)

in which the order reduction with respect to   is realized, compared to (2.2.16).
Next,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved between  ui ,t−1uit  (weighted with  1/it ) and  u it
2  (weighted with  i ,t−1 /it

2 ). 
Multiplying (2.2.8) for s=t−1  by 1/it  gives 

E [ui ,t−1 uit 1 /it ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2i ,t−1vi ,t−1i (2.2.20)
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and multiplying (2.2.10) by i ,t−1 /it
2  gives

E [uit
2− yit i ,t−1 /it

2  ∣ yi1 ,i , vi
t−1 , xi

t ]=i
2 i , t−1 . (2.2.21)

Applying the law of total expectation to (2.2.20) and (2.2.21), it follows that

E [ui ,t−1 uit 1 /it ]=E [i
2i ,t−1 ] , (2.2.22)

E [uit
2− yit i ,t−1 /it

2 ]=E [i
2i , t−1] . (2.2.23)

Subtracting (2.2.22) from (2.2.23),  the following  T−2  cross-linkage moment  conditions are 
obtained:

E [1/it  i ,t−1 /it uit−ui ,t−1uit−i , t−1/it  yit ]=0 , for t=3, , T . (2.2.24)

Eventually, a condensed full set of the moment conditions for the case where the assumption 
with  respect  to  the  equidispersion  is  imposed  in  addition  to  the  implicit  standard  assumptions 
associated with predetermined explanatory variables is composed of (2.2.11), (2.2.19), (2.2.24) and 
(2.2.12). That is, under the assumption (2.2.1) with (2.2.6), the condensed full set is composed of 
the moment conditions (2.2.11), (2.2.19), (2.2.24) and (2.2.12). The moment conditions (2.2.11), 
(2.2.19) and (2.2.12) are linear with respect to  , while (2.2.24) nonlinear.

Incidentally, another condensed full set of the moment conditions is constructed, mainly using 
the moment conditions proposed by Kitazawa (2007). For the case of predetermined explanatory 
variables,  Kitazawa  (2007)  proposes  the  following  T−3  moment  conditions  in  addition  to 
(2.2.11) and (2.2.12):

E [1/it  i , t−2 /i , t−1ui , t−1−u i ,t−2 uit ]=0 ,  for t=4, ,T , (2.2.25)

which represent the relationships between u i ,t−2uit  and ui ,t−1uit  for t=4, ,T . Further, 
for  the  case  of  predetermined  explanatory  variables,  Kitazawa  (2007)  proposes  the  following 

T−2  moment conditions associated with the equidispersion:

E [i ,t−1
2 /it

2 uit
2− yit −ui , t−1

2 − yi , t−1]=0 , for t=3, , T , (2.2.26)

which represent the relationships between u i ,t−1
2  and u it

2  for t=3, , T . Using any one in 
the cross-linkage moment conditions (2.2.19) and (2.2.24) in addition to the moment conditions 
(2.2.11), (2.2.25), (2.2.26) and (2.2.12), a condensed full set of the moment conditions is able to be 
constructed  under  the  assumption  (2.2.1)  with  (2.2.6)  .  However,  in  this  case,  the  T−3  or 

T−2  moment conditions nonlinear with respect to    increase, compared to the condensed 
full set described in the last paragraph.

2.3. Case of strictly exogenous explanatory variables
In this case, the assumption on the disturbance vit  is
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E [vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , for t=2, , T , (2.3.1)

which  is  referred  to  as  the  original  assumption  for  the  case  of  strictly  exogenous  explanatory 
variables in this paper. Kitazawa (2007) constructs the implicit standard assumptions from (2.3.1) as 
follows:

E [ yi1 vit ∣ yi1 ,i , vi
t−1 , x i

T ]=0 , (2.3.2)

E [vis vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 , for 2≤s≤t−1 , (2.3.3)

E [ xis vit ∣ yi1 ,i , vi
t−1 , x i

T ]=0 , for 1≤s≤T , (2.3.4)

E [i vit ∣ yi1 ,i , vi
t−1 , xi

T ]=0 . (2.3.5)

Here, the following assumption with respect to the equidispersion is assumed in addition to the 
implicit standard  assumptions (2.3.2) – (2.3.5):

E [vit
2− yit ∣ yi1 ,i , vi

t−1 , xi
T ]=0 , for t=2, , T . (2.3.6)

Using  the  assumptions  (2.3.2)  –  (2.3.6),  new  types  of  moment  conditions  based  on  the 
relationships  holding  between  variances  and  covariances  in  the  disturbances  are  proposed  in 
addition to the quasi-differenced moment conditions reformed by Kitazawa (2007) for the case of 
strictly  exogenous  explanatory  variables  in  this  section.  The  line  of  constructing  the  moment 
conditions in manner of Kitazawa (2007) is sketched as below.

According to Kitazawa (2007), the observable analogues for (2.3.2), (2.3.3), (2.3.4), and (2.3.6) 
are obtained by replacing the unobservable variables vit  with the observable variables u it :

E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

T ]= yi1iit , (2.3.7)

E [uisuit ∣ yi1 ,i , vi
t−1 , xi

T ]=i
2isitvisiit , for 2≤s≤t−1 , (2.3.8)

E [ xis uit ∣ yi1 ,i , vi
t−1 , xi

T ]= xisiit , for 1≤s≤T , (2.3.9)

E [uit
2− yit  ∣ yi1 ,i , vi

t−1 , xi
T ]=i

2it
2

, (2.3.10)

respectively.
Using the observable analogues (2.3.7) – (2.3.10), the relationships holding among yi1 uit  for 

t=2, ,T ,  among  uisuit  for  s=2, , t  and  t=2, ,T  and   among  xis uit  for 
s=1, , T  and  t=2, ,T  are  solved  through  the  intermediary  of  the  unconditional 

expectation operator after weighting them with appropriate transformations of explanatory variables 
xit  for t=1, , T . With the intention of ruling out the redundancies of the moment conditions 

to be constructed, condensed full sets of the relationships above are used to construct a lean set of 
the moment conditions.
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A condensed full set of the relationships among yi1 uit  for t=2, , T  is composed of the 
relationships between yi1 ui , t−1  and yi1 uit  for t=3, , T . The other relationships among 

yi1 uit  for  t=2, , T  are indirectly traced based on the trunk connections by exploiting the 
condensed full set.

In  addition,  a  condensed  full  set  of  the  relationships  among  uis uit  for  s=2, , t  and 
t=2, ,T  is  composed  of  the  relationships  between  uis ui , t−1  and  uis uit  for 
s=2, , t−1  and  t=3, , T  and  the  relationships  between  ui ,t−1uit  and  uit

2  for 
t=3, , T .  The  other  relationships  among  uis uit  for  s=2, , t  and  t=2, ,T  are 

indirectly traced based on the trunk connections by exploiting the condensed full set.
Both  relationships  between  yi1 ui , t−1  and  yi1 uit  for  t=3, , T  and  between 

uis ui , t−1  and uis uit  for s=2, , t−2  and t=4, ,T  are solved by Kitazawa (2007) in 
order  to  construct  the  T−2T −1/2  moment  conditions  based  on  the  product  of  the 
(observable) instrument variables and  the quasi-differenced transformation reformed by Kitazawa 
(2007) for the case of strictly exogenous explanatory variables. That is,

E [ yisuit−it /i ,t−1 u i ,t−1]=0 , for s=1, , t−2 ; t=3, , T , (2.3.11)

which hold even if the assumption (2.3.6) is not imposed.
Accordingly,  in  this  paper,  the  relationships  between  ui ,t−1

2  and  ui ,t−1uit  for 

t=3, , T  and the relationships between ui ,t−1uit  and uit
2  for t=3, , T  are solved in 

order  to  construct  the  moment  conditions  valid  for  the  case  of  strictly  exogenous  explanatory 
variables. These moment conditions are also referred to as the cross-linkage moment conditions for 
the  case  of  strictly  exogenous  explanatory  variables  in  this  paper,  because  they  represent  the 
relationships bridging between the observable analogues of variances of vit  and the observable 
analogues of covariances of vit  in the case of the equidispersion.

Further, the  T−2T  moment conditions based on a condensed full set of the relationships 
among xis uit  for s=1, , T  and t=2, ,T  are exhibited in Kitazawa (2007). They are

E [ xisuit−it /i , t−1ui , t−1]=0 , for s=1, , T ; t=3, , T , (2.3.12)

which  are  obtained  by  solving  the  relationships  between  xis ui ,t−1  and  xis uit  for 
s=1, , T  and t=3, , T . These moment conditions are also those based on the product of 

the  (observable)  instrument  variables  and  the  quasi-differenced  transformation  reformed  by 
Kitazawa (2007) for the case of strictly exogenous explanatory variables.

From  now  on,  two  types  of  the  cross-linkage  moment  conditions  for  the  case  of  strictly 
exogenous  explanatory  variables  are  solved  by  using  the  relationships  between  u i ,t−1

2  and 
ui ,t−1 uit  for  t=3, , T  and  the  relationships  between  ui ,t−1uit  and  uit

2  for 
t=3, , T . 
First,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved between  ui ,t−1
2  (weighted with it /i , t−1 ) and u i ,t−1 uit . Multiplying both sides 

of (2.3.10) dated t−1  by it /i , t−1  gives
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E [it /i ,t−1 ui , t−1
2 − yi ,t−1 ∣ yi1 ,i , vi

t−2 , xi
T ]=i

2it i ,t−1 . (2.3.13)

Applying the law of total expectation to (2.3.13) and (2.3.8) for s=t−1 , it follows that

E [it /i ,t−1 ui , t−1
2 − yi ,t−1 ]=E [i

2it i ,t−1 ] , (2.3.14)

E [ui ,t−1 uit ]=E [i
2i , t−1it ] . (2.3.15)

Subtracting (2.3.14) from (2.3.15) gives

E [ui ,t−1 uit−it /i , t−1ui , t−1it /i , t−1 yi , t−1]=0 . (2.3.16)

At this stage, creating the recursive equations

E [ yi ,t−1 uit−it /i , t−1ui , t−1]

=E [ yi , t−2 uit−it /i ,t−1u i , t−1]E [u i ,t−1 u it−it /i , t−1ui , t−1]
, (2.3.17)

from (2.1.2) dated t−1  and applying the moment conditions (2.3.11) for s=t−2 , it can be 
seen that the following relationships hold:

E [ui ,t−1 uit−it /i , t−1ui , t−1]=E [ yi , t−1uit−it /i ,t−1ui ,t−1] , (2.3.18)

Accordingly,  plugging (2.3.18) into (2.3.16) gives the following  T−2  cross-linkage moment 
conditions:

E [ yi ,t−1 uit−it /i , t−1ui ,t−1−1]=0 , for t=3, , T , (2.3.19)

in which the order reduction with respect to   is realized, compared to (2.3.16).
Next,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved  between  ui ,t−1uit  (weighted  with  it /i , t−1 )  and  uit
2 .  Multiplying  (2.3.8)  for 

s=t−1  by it /i , t−1  gives

E [it /i ,t−1 u i ,t−1 uit ∣ yi1 ,i , vi
t−1 , xi

T ]=i
2it

2vi ,t−1i it
2 /i ,t−1  . (2.3.20)

Applying the law of total expectation to (2.3.20) and (2.3.10),

E [it /i ,t−1 ui ,t−1 uit ]=E [i
2it

2 ] , (2.3.21)

E [uit
2− yit ]=E [i

2it
2 ] . (2.3.22)

Subtracting (2.3.21) from (2.3.22),  the following  T−2  cross-linkage moment  conditions are 
obtained:

E [uit−it /i ,t−1ui ,t−1uit− yit ]=0 ,  for t=3, , T . (2.3.23)
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Eventually, a condensed full set of the moment conditions for the case where the assumption 
with  respect  to  the  equidispersion  is  imposed  in  addition  to  the  implicit  standard  assumptions 
associated with strictly exogenous explanatory variables is composed of (2.3.11), (2.3.19), (2.3.23) 
and (2.3.12). That is, under the assumption (2.3.1) with (2.3.6), the condensed full set is composed 
of the moment conditions (2.3.11), (2.3.19), (2.3.23) and (2.3.12). The moment conditions (2.3.11), 
(2.3.19) and (2.3.12) are linear with respect to  , while (2.3.23) nonlinear.

Incidentally, another condensed full set of the moment conditions is constructed, mainly using 
the  moment  conditions  proposed  by  Kitazawa  (2007).  For  the  case  of  strictly  exogenous 
explanatory variables,  Kitazawa  (2007)  proposes  the  following  T−3  moment  conditions  in 
addition to (2.3.11) and (2.3.12):

E [ ui , t−1−i , t−1/i ,t−2ui , t−2 uit ]=0 ,  for t=4, ,T , (2.3.24)

which represent the relationships between  ui ,t−2uit  and  u i ,t−1uit  for  t=4, ,T .  The 
moment  conditions  (2.3.24)  are  able  to  be  regarded  as  being  conceptually  equivalent  to  those 
proposed by  Crépon and Duguet (1997), although the former is reformed compared to the latter 
allowing for the fact that the strictly exogenous explanatory variables are assumed. Further, for the 
case of strictly exogenous explanatory variables, Kitazawa (2007) proposes the following T−2  
moment conditions associated with the equidispersion:

E [uit
2− yit −it

2 /i , t−1
2 u i ,t−1

2 − yi , t−1]=0 , for t=3, , T , (2.3.25)

which represent the relationships between u i ,t−1
2  and u it

2  for t=3, , T . Using any one in 
the cross-linkage moment conditions (2.3.19) and (2.3.23) in addition to the moment conditions 
(2.3.11), (2.3.24), (2.3.25) and (2.3.12), a condensed full set of the moment conditions is able to be 
constructed  under  the  assumption  (2.3.1)  with  (2.3.6).  However,  in  this  case,  the  T−3  or 

T−2  moment conditions nonlinear with respect to    increase, compared to the condensed 
full set described in the last paragraph.

2.4. Case of mean-stationary dependent variables
In this case, the stationarity of the dependent and explanatory variables are additionally assumed for 
the case of predetermined explanatory variables in the LFM (2.1.1) (see Kitazawa, 2007).  

When

E [exp k xit  ∣i ]=E [i k  ∣i ] , for t=1, , T (2.4.1)

with k  being any real number and

yi1=1 /1−ii1vi1 (2.4.2)

with

E [vi1 ∣i , xi1]=0 , (2.4.3)

the dependent variables in the LFM are mean-stationary:
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E [ yit ]=1/1−E [ii] , for t=1, , T . (2.4.4)

In this case, the observable analogue (2.2.7) is rewritten as

E [ yi1 uit ∣ yi1 ,i , vi
t−1 , xi

t ]=1/ 1−i
2i1itvi1iit . (2.4.5)

Using  the  observable  analogues  (2.4.5)  and  (2.2.8)  with  (2.4.1),  the  relationships  between 
yi1 ui3  and  ui2 ui3  and between u i ,t−2u it  and ui ,t−1uit  for t=4, ,T through the 

intermediary  of  the  unconditional  expectation  operator  after  weighting  them  with  appropriate 
transformations of explanatory variables xit  for t=1, , T  are realized by Kitazawa (2007) as 
the following T−2  stationarity moment conditions for the case without requiring the assumption 
with respect to the equidispersion (2.2.6):

E [ yi ,t−1 1/it u it ]=0 , for t=3, , T , (2.4.6)

where   is the first-differencing operator.
In  addition,  the  relationships  between  xi , t−1uit  and  xit uit  for  t=2, , T  are  also 

realized by Kitazawa (2007) as the following T−1  stationarity moment conditions for the case 
without requiring the assumption with respect to the equidispersion (2.2.6):

E [ xit 1/ituit ]=0 , for t=2, ,T . (2.4.7)

From  now  on,  the  cross-linkage  moment  conditions  for  the  case  of  the  mean-stationary 
dependent variables are constructed in the situation where the assumptions (2.4.1) and (2.4.2) with 
(2.4.3) are imposed in addition to the assumption (2.2.1) with (2.2.6). They are solved by using the 
relationship between  yi1 ui2  and  ui2

2  and the relationships between  ui ,t−1uit  and  uit
2  

for t=3, , T .
First,  the  relationship  through  the  intermediary  of  the  unconditional  expectation  operator  is 

solved  between  yi1 ui2  (weighted  with  1/i2 )  and  ui2
2 (weighted  with  1/i2 ). 

Multiplying (2.4.5) by 1/it  gives

E [ yi11/it uit ∣ yi1 ,i , vi
t−1 , xi

t ]=1 /1−i
2i1vi1i . (2.4.8)

In addition, multiplying (2.2.10) by 1/it  gives

E [1/it uit
2− yit  ∣ yi1 ,i , v i

t−1 , xi
t ]=i

2it . (2.4.9)

Applying law of total expectation to (2.4.8) and (2.4.9) and allowing for (2.4.1), it follows that

E [ yi11/it uit ]=1 /1−E [i
2i ] , (2.4.10)

E [1/it uit
2− yit]=E [i

2i ] . (2.4.11)

Subtracting (2.4.10) for t=2  multiplied by 1−  from (2.4.11) for t=2  gives
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E [1/i2 yi2 ui2− yi2]=0 . (2.4.12)

Next,  the relationship through the intermediary of the unconditional  expectation operator   is 
solved  between  u i ,t−1 uit  (weighted  with  1/it )  and  u it

2 (weighted  with  1/it ). 
Allowing for (2.4.1), equation (2.2.22) is written as

E [ui ,t−1 1/ituit ]=E [i
2i ] . (2.4.13)

Subtracting (2.4.13) from (2.4.11) gives

E [uit 1/it uit− yit 1/it ]=0 . (2.4.14)

Creating the recursive equation

E [ yit 1/it uit ]= E [ yi ,t−1 1/it uit ]E [uit 1/it uit ] , for t=3, , T , (2.4.15)

from the first-differences of (2.1.2) and applying the moment conditions (2.4.6), it can be seen that 
the following relationships hold:

E [u it 1/it uit ]=E [ yit 1/it uit ] , for t=3, , T . (2.4.16)

Accordingly, plugging (2.4.16) into (2.4.14) gives the following T−2  moment conditions:

E [1/it  yit uit− yit ]=0 , for t=3, , T , (2.4.17)

in which the order reduction with respect to   is realized, compared to (2.4.14).
Writing (2.4.12) and (2.4.17) jointly, it follows that

E [1/it  yit u it− yit ]=0 , for t=2, ,T , (2.4.18)

which are referred to as the cross-linkage moment conditions for the case of stationary dependent 
variables (or the stationarity moment conditions for the case of the equidispersion) in this paper and 
whose number is T−1 .

Eventually, a condensed full set of the moment conditions for the case of stationary dependent 
variables when the assumption with respect to the equidispersion is imposed in addition to the 
implicit standard assumptions associated with predetermined explanatory variables is composed of 
(2.2.11), (2.2.19), (2.4.18), (2.2.12) and (2.4.7). That is, under the assumptions (2.2.1) with (2.2.6),
(2.4.1)  and  (2.4.2)  with  (2.4.3),  the  condensed  full  set  is  composed of  the  moment  conditions 
(2.2.11), (2.2.19), (2.4.18), (2.2.12) and (2.4.7), all of which are linear with respect to  .

Incidentally, another condensed full set of the moment conditions is constructed, mainly using 
the  moment  conditions  proposed by Kitazawa (2007).  Kitazawa (2007)  proposes  the following 

T−2  intertemporal homoscedasticity moment conditions associated with the equidispersion and 
stationary dependent variables for the case of predetermined explanatory variables:

E [uit
2−u i ,t−1

2 ]=0 , for t=3, , T , (2.4.19)
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which imply that  if  both the equidispersion  and the mean-stationarity hold with respect  to  the 
dependent variables for count panel data, the disturbances are homoscedastic over time. Using any 
one  of  the  cross-linkage  moment  conditions  (2.2.19)  and  (2.4.18)  in  addition  to  the  moment 
conditions  (2.2.11),  (2.4.6),  (2.4.19),  (2.2.12)  and  (2.4.7),  a  condensed  full  set  of  the  moment 
conditions is able to be constructed under the assumptions (2.2.1) with (2.2.6), (2.4.1) and (2.4.2) 
with  (2.4.3).  However,  the  intertemporal  homoscedasticity  moment  conditions  (2.4.19)  are 
nonlinear with respect to  .

2.5. Discussion
There can be a case where a manipulation is needed, when using any of the moment conditions 
(2.2.24) and (2.4.18) for the estimation of    and    as well as when using (2.2.25), (2.4.6) 
and (2.4.7). If all values in xit  are positive (which is the ordinary in the econometric analysis), 
the estimates of   using these moment conditions seem to be in danger of going to infinity. In 
this case, in order that xit  contains both positive and negative values evenly, xit  needs to be 
transformed in deviation from an appropriate value  b . That is,  xit  needs to be used in the 
estimations instead of xit , where xit= xit−b . The selection of b  by Windmeijer (2000) is 

the overall mean of x it  (i.e. b= 1 /N T  ∑
i=1

N

∑
t=1

T

xit ).

2.6. GMM estimators
Any set of the moment conditions for the LFM (2.1.1) can be collectively written in the following 

m×1  vector form:  

E [ gi ]=0 , (2.6.1)

where  m  is number of moment conditions,  =[ ] ' ,  g i   (which is the function of 
 ) is composed of the observable variables and   for the individual i . Using the following 

empirical counterpart for (2.6.1):

g  = 1/N ∑
i=1

N

g i  , (2.6.2)

the GMM estimator   is constructed by minimizing the following criterion function with respect 
to  :

g  ' W N  1 g  , (2.6.3)

where the  m×m  optimal  weighting matrix  is  given  as  follows by using  a  initial  consistent 
estimator of    (i.e. 1 ):

W N  1=1 /N ∑
i=1

N

gi
1g i

1 '
−1

. (2.6.4)

The efficient asymptotic variance of   is estimated by using

V  =1 /N D   ' W N  1 D  −1
, (2.6.5)
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where  D =∂ g /∂ '∣
= .3 The GMM estimations for the LFM are explained in detail in 

Windmeijer (2002, 2008).
For the case of predetermined explanatory variables, the following four GMM estimators are 

constructed:  the  GMM(qd)  estimator  using  the  moment  conditions  (2.2.11)  and  (2.2.12),  the 
GMM(qdc) estimator using the moment conditions (2.2.11), (2.2.12) and (2.2.19), the GMM(pr) 
estimator using the moment conditions (2.2.11), (2.2.12) and (2.2.25) and the GMM(prc) estimator 
using the moment conditions (2.2.11), (2.2.12), (2.2.19) and (2.2.24).

For the case of strictly exogenous explanatory variables, the following four GMM estimators are 
constructed:  the  GMM(qe)  estimator  using  the  moment  conditions  (2.3.11)  and  (2.3.12),  the 
GMM(qec) estimator using the moment conditions (2.3.11), (2.3.12) and (2.3.19), the GMM(ex) 
estimator using the moment conditions (2.3.11), (2.3.12) and (2.3.24) and the GMM(exc) estimator 
using the moment conditions (2.3.11), (2.3.12), (2.3.19) and (2.3.23).

For the case of mean-stationary dependent variables, the following two GMM estimators are 
constructed: the GMM(sa) estimator using the moment conditions (2.2.11), (2.2.12), (2.4.6) and 
(2.4.7) and GMM(sac) estimator using the moment conditions (2.2.11), (2.2.12), (2.4.7), (2.2.19) 
and (2.4.18).

It  should  be  noted  that  the  transformation  described  in  previous  subsection  is  needed  to 
implement the GMM(pr), GMM(prc), GMM(sa) and GMM(sac) estimators.

3. Monte Carlo
In this  section,  some small  sample performances of the GMM estimators exhibited in previous 
section are investigated with Monte Carlo experiments and the gains by the usage of the cross-
linkage moment conditions are examined in small sample. The experiments are implemented by 
using an econometric software TSP version 4.5.4

3.1. Data generating process
The data generating process (DGP) is as follows:

yit~Poisson yi , t−1exp xiti  , (3.1.1)

yi ,−TG1~Poisson1/1−exp xi ,−TG1i  , (3.1.2)

xit= xi ,t−1iit , (3.1.3)

xi ,−TG1=1/1−i1 /1−21/2i ,−TG1 , (3.1.4)

i~N 0,
2  ;  it~N 0,

2 ,

where  t=−TG1, ,−1,0,1, , T  with  TG  being  number  of  pre-sample  periods  to  be 
generated. In the DGP, values are set to the parameters  ,  ,  ,  , 

2  and 
2 . 

The experiments are carried out with TG=50 , the cross-sectional sizes N=100 , 500  and 
1000 , the numbers of periods used for the estimations  T=4  and  8 , and the number of 

3 It is conceivable that the usage of the finite sample corrected variance proposed by Windmeijer (2005, 2008) would 
be preferable in small sample.

4 See Hall and Cummins (2006) as for the details of the software.
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replications NR=1000 .
The DGP setting is the same as that of Blundell et al. (2007), except for the initial condition of 

yit . That is, the initial condition (3.1.2) denotes that the initial conditions of dependent variables 
are  stationary.  The  DGP  is  configured  with  the  explanatory  variables  xit  being  strictly 
exogenous.

3.2. Estimators for comparison
The following three estimators are used for comparison: the Level estimator, the within group (WG) 
mean scaling estimator and the pre-sample mean (PSM) estimator. The Level and WG estimators 
are inconsistent in the DGP settings above, where N  and T  are able to be regarded as being 
large and small respectively. On the contrary, the PSM estimator is consistent if the long history is 
used in constructing the pre-sample means of dependent variables. The details on these estimators 
are described in Blundell et al. (1999, 2002) and Kitazawa (2007).

3.3. Monte Carlo results
Results for the Monte Carlo experiments are exhibited in Table 1 for the situation of moderately 
persistent  yit  and  xit  when  T=4 , in Table 2 for the situation of moderately persistent 

yit  and xit  when T=8 , in Table 3 for the situation of considerably persistent yit  and 
xit  when  T=8  and  in  Table  4  for  the  situation  of  considerably  persistent  yit  and 

extremely persistent  xit  when  T=8 . The settings of values of parameters are the same as 
those  in  Blundell  et  al.  (2002)  and for  the  case  of  strictly exogenous explanatory variables  in 
Kitazawa (2007), except for the initial conditions of dependent variables. The bias and rmse are 
calculated for the parameters   and   estimated by using the Level, WG, GMM and PSM 
estimators.

The  endemic  upward  and  downward  biases  are  found  for  the  Level  and  WG  estimators 
respectively, while the PSM estimator behaves well as the pre-sample length used elongates.

The instruments used for the GMM estimators are curtailed so that the past dependent variables (
yit ) dated  t−3  and before are not used for the quasi-differenced equation dated  t  and 

further for the GMM(qd), GMM(qdc), GMM(pr), GMM(prc), GMM(sa) and GMM(sac) estimators 
the  past  explanatory  variables  ( xit )  dated  t−3  and  before  are  not  used  for  the  quasi-
differenced equation dated t . The size alleviation of bias and rmse for the all GMM estimators is 
found as N  increases, which is the reflection of the consistency. Then, the results on the GMM 
estimators suggest that some gains and no loss seem to be obtained in small sample by using the 
cross-linkage moment conditions associated with the equidispersion.

Firstly, it is conceivable that the GMM estimators using the cross-linkage moment conditions 
outperform the conventional GMM(qd) estimator.

Secondly, comparing the results using the GMM(qd) estimator with those using the GMM(qdc) 
estimator  (where both estimators are  tailored to  the specification for the case of predetermined 
explanatory variables) and comparing the results using the GMM(qe) estimator with those using the 
GMM(qec) estimator (where both estimators are tailored to the specification for the case of strictly 
exogenous  explanatory  variables),  it  can  be  said  that  the  GMM  estimators  additionally 
incorporating  parts  of  the  cross-linkage  moment  conditions  perform  better  than  those  without 
incorporating  the  cross-linkage  moment  conditions.  This  is  conspicuous  for  the  situation  of 
moderately persistent yit  and xit  when T=4 .

Thirdly, comparing the results using the GMM(pr) estimator with those using the GMM(prc) 
estimator  (where both estimators are  tailored to  the specification for the case of predetermined 
explanatory variables), comparing the results using the GMM(ex) estimator with those using the 
GMM(exc) estimator (where both estimators are tailored to the specification for the case of strictly 
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exogenous explanatory variables) and comparing the results  using the GMM(sa)  estimator with 
those using the GMM(sac) estimator (where both estimators are tailored to the specification for the 
case of mean-stationary dependent variables), it can be said that the GMM estimators utilizing the 
condensed  full  set  incorporating  the  cross-linkage  moment  conditions  maximally  does  not 
underperform those without incorporating the cross-linkage moment conditions.5 

After  all,  these  Monte  Carlo  experiments  say  that  the  usage  of  the  cross-linkage  moment 
conditions associated with the equidispersion improves or does not at least vitiate the small sample 
performances for the case of the equidispersion,  as long as comparing the results of the GMM 
estimators incorporating the cross-linkage moment conditions with those incorporating no cross-
linkage moment condition. It is particularly worth noting that the GMM estimators incorporating 
the cross-linkage moment conditions perform better than the conventional GMM(qd) estimator.

4. Conclusion
In this  paper,  the cross-linkage moment conditions associated with the equidispersion for count 
panel data model were proposed for the case of predetermined explanatory variables, for the case of 
strictly exogenous explanatory variables and for the case of mean-stationary dependent variables. In 
the Monte Carlo experiments whose DGP are of the Poisson model, it was shown that the GMM 
estimators incorporating the cross-linkage moment conditions behave better than the conventional 
GMM(qd)  estimator  in  small  sample  and  some  gains  are  found  when  using  the  cross-linkage 
moment conditions.
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Table 1
Monte Carlo results for LFM, T=4
(Situation of moderately persistent yit  and xit )
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

Notes: (1) The number of replications is 1000. (2) The instrument sets for GMM estimators include no time dummies. (3) As for the 
PSM estimator, the figures in the parentheses next to   and   imply numbers of the latest pre-sample periods used for the 
estimations. (4) Both of the replications where no convergence is achieved in the estimations and/or where the estimates of   
and    whose absolute values exceed 10 are obtained (in the Level and PSM estimators) are eliminated when calculating the 
values of the Monte Carlo statistics. Their rates are below about three percent in total for each experiment. (5) The individuals where 
the pre-sample means are zero are eliminated in each replication when estimating the parameters of interest using the PSM estimator. 
(6) The values of the Monte Carlo statistics exhibited in the table are those obtained using the true values of   and   as the 
starting values in the optimizations for each replication. The values of the statistics obtained using the true values are not much 
different from those obtained using two different types of the starting values. The differences are below about 0.01 in terms of the 
absolute value in nearly all cases and below about 0.02 in almost all cases.
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N=100 N=500 N=1000

bias bias bias
Level 0.256 0.264 0.273 0.275 0.278 0.279 

0.545 0.656 0.549 0.571 0.557 0.573 
WG -0 .452  0 .463  -0 .446 0 .449 -0 .446 0 .447 

-0 .260  0 .272  -0 .261 0 .263 -0 .263 0 .264 

-0.274 0.398 -0.104 0.161 -0.061 0.112 
-0.259 0.371 -0.124 0.219 -0.078 0.172 

-0 .054  0 .155  -0 .006 0 .066 -0 .001 0 .045 
-0 .134  0 .288  -0 .028 0 .148 -0 .013 0 .104 

GMM(pr) -0.090 0.214 -0.037 0.092 -0.016 0.067 
-0.159 0.282 -0.059 0.157 -0.026 0.134 

-0 .024  0 .158  -0 .007 0 .062 -0 .002 0 .043 
-0 .166  0 .281  -0 .056 0 .147 -0 .029 0 .107 

-0.222 0.306 -0.060 0.110 -0.031 0.075 
-0.148 0.220 -0.049 0.111 -0.025 0.086 

-0 .074  0 .156  -0 .004 0 .060 0 .000 0 .042 
-0 .083  0 .185  -0 .008 0 .088 -0 .001 0 .067 

GMM(ex) -0.103 0.226 -0.035 0.092 -0.015 0.058 
-0.106 0.214 -0.032 0.106 -0.013 0.077 

-0 .008  0 .170  0 .007 0 .063 0 .006 0 .042 
-0 .073  0 .233  -0 .005 0 .094 0 .001 0 .069 

-0.023 0.139 -0.019 0.079 -0.010 0.059 
-0.053 0.212 -0.023 0.137 -0.012 0.104 

GMM(sac) 0 .038  0 .115  0 .016 0 .060 0 .011 0 .043 
-0 .022  0 .215  0 .016 0 .133 0 .012 0 .099 

0.132 0.156 0.157 0.162 0.163 0.167 
0.191 0.296 0.205 0.225 0.211 0.229 

0 .104  0 .132  0 .125 0 .131 0 .130 0 .135 
0 .141  0 .228  0 .148 0 .165 0 .152 0 .165 
0.046 0.091 0.061 0.072 0.066 0.073 
0.058 0.139 0.062 0.083 0.065 0.078 

0 .020  0 .081  0 .033 0 .050 0 .038 0 .048 
0 .031  0 .119  0 .032 0 .059 0 .035 0 .052 

rmse rmse rmse
γ
β
γ
β

GMM(qd) γ
β

GMM(qdc) γ
β
γ
β

GMM(prc) γ
β

GMM(qe) γ
β

GMM(qec) γ
β
γ
β

GMM(exc) γ
β

GMM(sa) γ
β
γ
β

PSM γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50 )
β(50 )



Table 2
Monte Carlo results for LFM, T=8
(Situation of moderately persistent yit  and xit )
=0.5 ; =0.5 ; =0.5 ; =0.1 ; 

2=0.5 ; 
2=0.5

Notes: See Table 1.
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N=100 N=500 N=1000

bias bias bias
Level 0.262 0.267 0.275 0.277 0.278 0.279 

0.537 0.586 0.550 0.565 0.559 0.568 
WG -0 .189  0 .198  -0 .184 0 .186 -0 .185 0 .186 

-0 .126  0 .139  -0 .127 0 .130 -0 .127 0 .129 

-0.229 0.261 -0.076 0.096 -0.046 0.062 
-0.232 0.265 -0.105 0.131 -0.066 0.091 

-0 .147  0 .185  -0 .019 0 .044 -0 .007 0 .027 
-0 .217  0 .257  -0 .057 0 .093 -0 .024 0 .057 

GMM(pr) -0.006 0.128 -0.029 0.054 -0.023 0.040 
-0.117 0.190 -0.064 0.096 -0.043 0.069 

-0 .007  0 .103  -0 .006 0 .038 -0 .003 0 .026 
-0 .154  0 .213  -0 .066 0 .097 -0 .031 0 .060 

-0.321 0.337 -0.080 0.092 -0.041 0.050 
-0.233 0.243 -0.081 0.091 -0.042 0.053 

-0 .261  0 .281  -0 .035 0 .049 -0 .012 0 .025 
-0 .221  0 .236  -0 .053 0 .069 -0 .021 0 .038 

GMM(ex) 0.011 0.179 -0.021 0.055 -0.019 0.036 
-0.129 0.212 -0.039 0.065 -0.025 0.045 

-0 .036  0 .140  -0 .008 0 .042 -0 .003 0 .025 
-0 .115  0 .222  -0 .038 0 .075 -0 .018 0 .042 

-0.012 0.079 -0.012 0.043 -0.009 0.031 
-0.070 0.134 -0.027 0.073 -0.017 0.053 

GMM(sac) 0 .029  0 .077  0 .010 0 .037 0 .007 0 .027 
-0 .012  0 .142  -0 .003 0 .074 0 .004 0 .058 

PSM 0.145 0.155 0.162 0.165 0.165 0.167 
0.197 0.231 0.210 0.222 0.216 0.221 

0 .115  0 .127  0 .131 0 .135 0 .134 0 .136 
0 .145  0 .178  0 .155 0 .164 0 .160 0 .165 
0.054 0.075 0.068 0.073 0.070 0.073 
0.063 0.100 0.068 0.078 0.071 0.076 

0 .027  0 .059  0 .039 0 .047 0 .040 0 .044 

0 .033  0 .078  0 .036 0 .049 0 .039 0 .045 

rmse rmse rmse
γ
β
γ
β

GMM(qd) γ
β

GMM(qdc) γ
β
γ
β

GMM(prc) γ
β

GMM(qe) γ
β

GMM(qec) γ
β
γ
β

GMM(exc) γ
β

GMM(sa) γ
β
γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50 )

β(50 )



Table 3
Monte Carlo results for LFM, T=8
(Situation of considerably persistent yit  and xit )
=0.7 ; =1 ; =0.9 ; =0 ; 

2=0.5 ; 
2=0.05

Notes: See Table 1. Further, (7) The values of the Monte Carlo statistics written in an italic type for the GMM estimators are obtained 
using one of the two different types of the starting values, whose differences from those obtained using another are below about 0.01  
in terms of the absolute value. The reason why these values are exhibited in the table is that the values of the statistics obtained using 
the true values are mildly different from those obtained using the two different values.
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N=100 N=500 N=1000

bias bias bias
Level 0.169 0.173 0.181 0.182 0.181 0.182 

0.420 0.644 0.433 0.489 0.427 0.455 
WG -0 .250  0 .257  -0 .245 0 .247 -0 .245 0 .245 

-0 .362  0 .398  -0 .365 0 .372 -0 .364 0 .367 

-0.359 0.413 -0.105 0.136 -0.061 0.086 
-0.682 0.889 -0.397 0.586 -0.278 0.432 

-0 .223  0 .277  -0 .019 0 .049 -0 .006 0 .030 
-0 .659  0 .879  -0 .238 0 .461 -0 .116 0 .297 

GMM(pr) 0.035 0.149 -0.017 0.070 -0.018 0.048 
-0.344 0.601 -0.217 0.364 -0.162 0.290 
0 .025  0 .107  0 .006 0 .041 0 .000 0 .027 

-0 .364  0 .605  -0 .273 0 .399 -0 .180 0 .293 

-0.521 0.542 -0.140 0.156 -0.066 0.079 
-0.628 0.647 -0.292 0.321 -0.156 0.192 

-0 .430  0 .453  -0 .058 0 .074 -0 .018 0 .033 
-0 .618  0 .652  -0 .184 0 .237 -0 .063 0 .131 

GMM(ex) 0.069 0.193 -0.004 0.073 -0.009 0.046 
-0.412 0.809 -0.091 0.227 -0.046 0.140 
0 .034  0 .119  0 .014 0 .045 0 .007 0 .029 

-0 .258  0 .859  -0 .032 0 .251 -0 .001 0 .140 

0.000 0.080 -0.012 0.043 -0.011 0.033 
-0.275 0.448 -0.134 0.248 -0.094 0.201 

GMM(sac) 0 .032  0 .084  0 .009 0 .035 0 .003 0 .025 
-0 .220  0 .460  -0 .128 0 .256 -0 .075 0 .201 

PSM 0.114 0.125 0.134 0.137 0.135 0.137 
0.052 0.432 0.070 0.205 0.066 0.155 

0 .104  0 .115  0 .123 0 .126 0 .124 0 .126 
0 .012  0 .330  0 .031 0 .174 0 .025 0 .117 
0.076 0.091 0.093 0.096 0.093 0.095 

-0.007 0.219 0.002 0.109 -0.002 0.077 
0 .055  0 .073  0 .069 0 .074 0 .069 0 .072 

0 .001  0 .186  0 .005 0 .084 0 .003 0 .062 

rmse rmse rmse
γ
β
γ
β

GMM(qd) γ
β

GMM(qdc) γ
β
γ
β

GMM(prc) γ
β

GMM(qe) γ
β

GMM(qec) γ
β
γ
β

GMM(exc) γ
β

GMM(sa) γ
β
γ
β

γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50 )

β(50 )



Table 4
Monte Carlo results for LFM, T=8
(Situation of considerably persistent yit  and extremely persistent xit )
=0.7 ; =1 ; =0.95 ; =0 ; 

2=0.5 ; 
2=0.015

Notes: See Table 1. Further, (7) The values of the Monte Carlo statistics written in an italic type for the GMM estimators are obtained 
using one of the two different types of the starting values, whose differences from those obtained using another are below about 0.01  
in terms of the absolute value. The reason why these values are exhibited in the table is that the values of the statistics obtained using 
the true values are mildly different from those obtained using the two different values.
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N=100 N=500 N=1000

bias bias bias
Level 0.171 0.175 0.183 0.184 0.184 0.185 

0.241 0.489 0.240 0.318 0.249 0.288 
WG -0 .276  0 .282  -0 .272 0 .273 -0 .270 0 .271 

-0 .354  0 .450  -0 .360 0 .379 -0 .357 0 .368 

-0.435 0.500 -0.142 0.189 -0.070 0.106 
-0.776 1.433 -0.561 1.109 -0.397 0.842 

-0 .230  0 .286  -0 .014 0 .048 0 .000 0 .030 
-0 .769  1 .350  -0 .287 0 .787 -0 .194 0 .599 

GMM(pr) 0.041 0.159 0.001 0.081 -0.006 0.058 
-0.290 0.830 -0.173 0.532 -0.143 0.441 
0 .030  0 .106  0 .017 0 .044 0 .008 0 .030 

-0 .313  0 .781  -0 .302 0 .564 -0 .257 0 .468 

-0.599 0.621 -0.190 0.212 -0.090 0.107 
-0.635 0.678 -0.337 0.383 -0.187 0.247 

-0 .476  0 .497  -0 .060 0 .079 -0 .015 0 .033 
-0 .629  0 .698  -0 .188 0 .295 -0 .056 0 .184 

GMM(ex) 0.057 0.184 0.005 0.087 -0.008 0.058 
-0.373 1.179 -0.073 0.346 -0.029 0.212 
0 .026  0 .115  0 .020 0 .047 0 .011 0 .031 

-0 .267  1 .373  0 .001 0 .366 0 .007 0 .207 

0.017 0.088 0.003 0.046 -0.001 0.035 
-0.286 0.593 -0.139 0.362 -0.092 0.283 

GMM(sac) 0 .054  0 .107  0 .024 0 .046 0 .013 0 .031 
-0 .230  0 .605  -0 .145 0 .361 -0 .092 0 .284 

0.108 0.119 0.128 0.131 0.131 0.132 
-0.199 0.420 -0.194 0.252 -0.190 0.221 
0 .097  0 .108  0 .116 0 .118 0 .118 0 .120 

-0 .242  0 .395  -0 .239 0 .277 -0 .234 0 .253 
0.070 0.084 0.086 0.090 0.089 0.091 

-0.235 0.331 -0.233 0.258 -0.226 0.239 
0 .052  0 .069  0 .067 0 .072 0 .070 0 .073 

-0 .170  0 .270  -0 .166 0 .194 -0 .162 0 .175 

rmse rmse rmse
γ
β
γ
β

GMM(qd) γ
β

GMM(qdc) γ
β
γ
β

GMM(prc) γ
β

GMM(qe) γ
β

GMM(qec) γ
β
γ
β

GMM(exc) γ
β

GMM(sa) γ
β
γ
β

PSM γ(4)
β(4)
γ(8)
β(8)
γ(25)
β(25)
γ(50 )

β(50 )


