
Consistent estimation for the full-fledged fixed effects
zero-inflated Poisson model∗

Yoshitsugu Kitazawa†

June 21, 2014

Abstract

This paper advocates the transformations used for the consistent estimation of the full-
fledged fixed effects zero-inflated Poisson model whose zero outcomes can arise from both
of logit and Poisson parts and which equips both parts with the fixed effects. The valid
moment conditions are constructed on the basis of the transformations. The finite sample
behaviors of GMM and EL estimators employing the moment conditions are investigated
by use of Monte Carlo experiments.
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1 Introduction

The zero-inflated Poisson model (hereafter ZIP model) originally proposed by Mullahy (1986)
and extended by Lambert (1992) is one of the models dealing with count data with zero values
being superabundant.1 Empirical studies using the ZIP model are often found in the litera-
ture on the econometric analysis: Gurmu and Trivedi (1996) on the relationship between the
recreational boating trips and boat owners’ attributes, Crépon & Duguet (1997) and Hu &
Jefferson (2009) on the patents and R&D relationship, Tomlin (2000) on the FDI and foreign
exchange relationship, List (2001) on the scheduled interviews and characteristics relationship
with respect to job-seekers in the academic market, Campolieti (2002) on the relationship be-
tween recurrence of workers’ injuries and employer accommodations, Durham et al. (2004) on
the selection and characteristics relationship with respect to wine in a restaurant, Edmeades &
Smale (2006) on the relationship on count of banana plants and traits with respect to household
farms, and Frondel & Vance (2011) investigating the determinants of public transit ridership
in Germany, etc.

However, to the best of the author’s knowledge, two types of studies deal with the incipient
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1The ZIP model proposed by Mullahy (1986) uses constant instead of logit in the binary process.
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ZIP model allowing for the fixed effects in the context of count panel data.2 Majo (2010) and
Majo & Van Soest (2011) consider the fixed effects ZIP model including the fixed effects in
both of logit and Poisson parts, propose the estimation method for the model, and apply it to
the micro level data concerning health care service utilization in Europe. Their model assumes
the truncated-at-zero Poisson model in Poisson part, implying that the origin of the zero count
outcomes is confined to the logit part. On the contrary, the quasi-conditional maximum likeli-
hood estimator presented by Gilles (2012) and Gilles & Kim (2013) can consistently estimate
the fixed effects ZIP model where the zero count outcomes originate from Poisson part as well
as from the logit part. However, the fixed effects ZIP model which they assume incorporates
no fixed effect in the logit part. Accordingly, it might be said that the fixed effects ZIP models
assumed in both types of studies are still less plenary.

Different from the studies by Majo (2010) and Majo & Van Soest (2011) and by Gilles (2012)
and Gilles & Kim (2013), the fixed effects ZIP model discussed in this paper has the Poisson part
from which the zero count outcome is not improbable and the logit part with the fixed effects
being built-in. The valid moment conditions for this ZIP model are constructed based on two
transformations for different specifications of the explanatory variables in Poisson part and then
the parameters of interest are consistently estimated by use of the GMM (Generalized Method
of Moments) proposed by Hansen (1982) and EL (Empirical Likelihood) method proposed by
Owen (1988, 1990, 1991, 2001) and advanced by Qin & Lawless (1994) using these moment
conditions. Monte Carlo experiments (which are limited) show that the large cross-sectional
size would be needed for enhancing the accuracy and precision of the estimators.

The rest of the paper is organized as follows. Section 2 provides the fixed effects ZIP model
with the fixed effects being included in both of logit and Poisson parts and constructs the
moment conditions for consistently estimating the parameters of interest in both parts. Section
3 outlines the GMM and EL estimators using the moment conditions. Section 4 lays out some
Monte Carlo results for the estimators. Section 5 concludes the discussion.

2 Model and moment conditions

In this section, the fixed effects ZIP model is considered, which has two potential sources of
outbreaks of zero count variables: logit probability and Poisson density and which furnishes
both of logit and Poisson parts with the fixed effects. The model in this paper is distinct from
that assumed in Majo (2010) and Majo & Van Soest (2011) and that assumed in Gilles (2012)
and Gilles & Kim (2013), as is described in previous section. The fixed effects ZIP model is
described in the implicit form and the mean and variance of its disturbance are specified. Then,
presupposing that the disturbance and its square are uncorrelated with any transformations of
the disturbances in past and the fixed effects, the moment conditions for consistently estimating
the parameters of interest are constructed under both of the slightly strong assumptions and
the mitigated ones. Under the slightly strong assumptions, the explanatory variables in both
of the logit probability and the Poisson mean are slightly exogenous, while under the mitigated
assumptions, the explanatory variables in the logit probability are slightly exogenous and those
in the Poisson mean are predetermined. The overtone of the slight exogeneity introduced in
this paper is that the count dependent variable at a given period wield no influence over the
explanatory variable at the period just behind the occurrence of its count variable, whereas it
could make some sorts of influences on the subsequent explanatory variables.

2A small number of studies deal with various kinds of the random effects ZIP model (e.g. Crépon & Duguet,
1997; Hall, 2000; Min & Agresti, 2005; Lam et al., 2006; Hasan & Sneddon, 2009; Feng & Zhu, 2011). However,
the random effects model generally lacks flexibility, compared to the fixed effects model. One of the assumptions
often claimed in the panel data analysis is that the individual heterogeneity can be arbitrarily correlated with
the explanatory variables.
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2.1 Fixed effects ZIP model

The fixed effects ZIP model has the following two potential sources of outbreaks of zero count
dependent variables: yit = 0 with probability 1 − pit, while yit ∼ Pois(qit) with probability
pit, where subscripts i and t denote the individual and the time period with i = 1, . . . , N and
t = 1, . . . , T , respectively. It is assumed that N → ∞, whereas T is fixed.

In this paper, the logit probability of generating the binary process is specified as pit =
exp(ψi+δwit)/(1+exp(ψi+δwit)), while the mean of generating the Poisson process is specified
as qit = exp(ηi + βxit), where ψi and ηi are the fixed effects, wit and xit are the (continuous)
explanatory variables, and δ and β are the parameters of interest. It is assumed that the
variables in the model are independent and identically distributed among individuals.

The fixed effects ZIP model can be written in the following implicit form:

yit = pitqit + vit, (1)

where the disturbance vit is tailored to the specifications based on the slightly strong assump-
tions and the mitigated ones as is described in the following subsections.3

2.2 Slightly strong assumptions and moment conditions

In this case, the assumptions on the disturbances are as follows:

E[vit | ψi, wt+1
i , ηi, x

t+1
i , vt−1

i ] = 0, (2)

E[v2it | ψi, wt+1
i , ηi, x

t+1
i , vt−1

i ] = pitqit(1 + (1− pit)qit), (3)

where wt+1
i = (wi1, . . . , wi,t+1), x

t+1
i = (xi1, . . . , xi,t+1), and v

t−1
i = (vi0, . . . , vi,t−1) with vi0 being

empty.
Under the assumptions (2) and (3) for the implicit form (1), the following moment conditions

are constructed for consistently estimating δ and β when N → ∞ and T is fixed:

E[Φit(δ, β) | ψi, wti , ηi, xti, vt−2
i ] = 0, for t = 2, . . . , T , (4)

with

Φit(δ, β) = (tanh(δ ∆wit/2)− 1) exp(−β ∆xit)(y
2
it − yit)

+(tanh(δ ∆wit/2) + 1) exp(β ∆xit)(y
2
i,t−1 − yi,t−1)− 2 tanh(δ ∆wit/2)yityi,t−1, (5)

where ∆ is the first-differencing operator such as ∆wit = wit − wi,t−1 and ∆xit = xit − xi,t−1.
The derivation of (4) with (5) is shown in Appendix A.

The transformation (5) is referred to as the “PHI transformation” in this paper. As is
seen from (4), the PHI transformation can construct the unconditional moment conditions for
consistently estimating the parameters of interest (i.e. δ and β) by using the functions of the
information set (ψi, w

t
i , ηi, x

t
i, v

t−2
i ), if the explanatory variables in both the logit probability

and the Poisson mean are slightly exogenous.

3As is seen from (1), the mean of the dependent variable yit is the product of the logit probability and the
exponential function. Accordingly, the conventional estimators for the ordinary fixed effects count data model,
such as the within group mean scaling estimator proposed by Blundell et al. (2002) (which is equivalent to the
conditional maximum likelihood estimator proposed by Hausman et al., 1984) and the quasi-differenced GMM
estimators proposed by Chamberlain (1992) and Wooldridge (1997), are not applicable to the fixed effects ZIP
model proposed in this paper.
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2.3 Mitigated assumptions and moment conditions

In this case, the assumptions on the disturbances are as follows:

E[vit | ψi, wt+1
i , ηi, x

t
i, v

t−1
i ] = 0, (6)

E[v2it | ψi, wt+1
i , ηi, x

t
i, v

t−1
i ] = pitqit(1 + (1− pit)qit). (7)

Under the assumptions (6) and (7) for the implicit form (1), the following moment conditions
are constructed for consistently estimating δ and β when N → ∞ and T is fixed:

E[Ψit(δ, β) | ψi, wti , ηi, xt−1
i , vt−2

i ] = 0, for t = 2, . . . , T , (8)

with

Ψit(δ, β) = (tanh(δ ∆wit/2)− 1) exp(−2β ∆xit)(y
2
it − yit)

+(tanh(δ ∆wit/2) + 1)(y2i,t−1 − yi,t−1)− 2 tanh(δ ∆wit/2) exp(−β ∆xit)yityi,t−1. (9)

The derivation of (8) with (9) is shown in Appendix B.
The transformation (9) is referred to as the “PSI transformation” in this paper. As is

seen from (8), the PSI transformation can construct the unconditional moment conditions for
consistently estimating the parameters of interest (i.e. δ and β) by using the functions of the
information set (ψi, w

t
i , ηi, x

t−1
i , vt−2

i ), if the explanatory variables in the logit probability are
slightly exogenous and those in the Poisson mean are predetermined.

3 Estimation methods

This section reviews the two estimators using the unconditional moment conditions based on the
PHI or PSI transformations in previous section. The GMM estimator is obtained by minimizing
the quadratic form composed of the sample version vector of moment conditions and a weighting
matrix. The EL estimator, as an alternative to the GMM estimator, is obtained by maximizing
the log likelihood constructed by using the implied probability under the constraint of the
sample version vector weighted by the implied probability. Many studies revealing that the
EL estimator behaves better than the GMM estimator in small sample are reported using the
theoretical analysis and Monte Carlo experiment (e.g. Newey & Smith, 2004; Anatolyev, 2005;
Ramalho, 2005).

3.1 GMM estimator

Any set of the unconditional moment conditions constructed on the basis of (4) with (5) and
(8) with (9) can be collectively written in the following m× 1 vector form:

E[gi(θ)] = 0, (10)

where m is number of the moment conditions, θ = [δ β]′, gi(θ) (which is the function of θ) is
composed of the observables variables for the individual i and the parameter vector θ. Using
the following sample moments without gi(θ) being weighted:

ḡ(θ) = (1/N)
N∑
i=1

gi(θ) = 0, (11)

which is the ersatz of (10), and the m×m inverse of asymptotically optimal weighting matrix:

Ω̄(θ̂1) = (1/N)
N∑
i=1

gi(θ̂1)gi(θ̂1)
′, (12)
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where θ̂1 is any initial consistent estimator for θ, the GMM estimator is constructed as follows:

θ̂GMM = argmin
θ
ḡ(θ)′(Ω̄(θ̂1))

−1ḡ(θ) . (13)

Taking notice of the assumption that the variables are independent and identically dis-
tributed among individuals, it follows that

N1/2(θ̂GMM − θ0)
d−→ N(0, (D(θ0)

′(Ω(θ0))
−1D(θ0))

−1), (14)

where D(θ0) = (∂E[gi(θ)]/∂θ
′) | θ=θ0 and Ω(θ0) = E[gi(θ0)gi(θ0)

′] with θ0 being the true value
of θ.

3.2 EL estimator

Hsueh & Lee (2009, 2012) are the pioneering works of applying the EL estimation to count panel
data model. According to their papers, the probability πi is defined for individual i, which is the
probability of realization of the variables composing gi(θ) and satisfies the following relationship
by definition:

N∑
i=1

πi = 1. (15)

In addition, the “surprisal” for individual i is − ln(1/N) when the following constraint is not
imposed:

N∑
i=1

πigi(θ) = 0, (16)

which is interpreted as being the empirical counterpart of (10) weighted with the probability
πi, while it is defined as − ln πi subject to (16) when the constraint (16) is imposed.4 The EL
estimator for θ (i.e. θ̂EL) is obtained by maximizing the arithmetic mean of the differences of
the former from the latter with respect to θ and π1, . . . , πN . That is, the problem to be solved
is as follows:

min
θ,π1,...,πN

−(1/N)
N∑
i=1

((− ln(1/N))− (− ln πi)), (17)

subject to (15) and (16).
The usage of some algebras in this minimization problem leads to the solution of the fol-

lowing dual problem:

θ̂EL = argmin
θ
(max

λ
(1/N)

N∑
i=1

ln(1− λ′gi(θ))), (18)

where λ is the m× 1 vector of Lagrange multipliers used in the minimization problem for (17)
subject to (15) and (16). It should be noted that in transforming the problem from (17) subject
to (15) and (16) to (18), number of the parameters to be estimated decreases from 2 + N to
2 +m, as long as N > m. Qin & Lawless (1994) show that the EL estimator θ̂EL has the same
limit distribution as the GMM estimator θ̂GMM, which is represented by (14).

4The terminology “surprisal” is coined by Tribus (1961).
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4 Monte Carlo

In this section, the finite sample behaviors of the GMM and EL estimators based on the PHI and
PSI transformations are investigated with some Monte Carlo experiments. The experiments
are carried out by using the programming language “R” (version 3.0.2) developed by R Core
Team (2013).

4.1 Data generating process

The data generating process (DGP) is as follows:

yit = ypity
q
it,

ypit ∼ Bin(1, pit),

pit = exp(ψi + δwit)/(1 + exp(ψi + δwit)),

wit = αwi,t−1 + ιψi + ζit,

wi1 = (1/(1− α))ιψi + (1/(1− α2)(1/2))ζi1,

ψi ∼ N(0, σ2
ψ); ζit ∼ N(0, σ2

ζ ),

yqit ∼ Pois(qit),

qit = exp(ηi + βxit),

xit = ρxi,t−1 + τηi + εit,

xi1 = (1/(1− ρ))τηi + (1/(1− ρ2)(1/2))εi1,

ηi ∼ N(0, σ2
η); εit ∼ N(0, σ2

ε).

In the DGP, values are set to the parameters δ, α, ι, σ2
ψ, σ

2
ζ , β, ρ, τ , σ

2
η and σ2

ε . The
cross-sectional size N = 1000, 5000 and 10000 and the number of time periods T = 4 and 8 are
used in the experiments. The number of replications is 10000.

4.2 Estimators assayed

In the experiments, the GMM and EL estimators utilize the unconditional moment conditions
based on two types of the conditional moment conditions: (4) with (5) (based on the PHI
transformation) and (8) with (9) (based on the PSI transformation).

The unconditional moment conditions constructed based on the PHI transformation are as
follows:

E[Φit(δ, β) ∆wit] = 0, for t = 2, . . . , T , (19)

E[Φit(δ, β) ∆xit] = 0, for t = 2, . . . , T , (20)

while those based on the PSI transformation are as follows:

E[Ψit(δ, β) ∆wit] = 0, for t = 2, . . . , T , (21)

E[Ψit(δ, β) xis] = 0, for s = 1, . . . , t− 1; t = 2, . . . , T , (22)

where the moment conditions (22) are of the forms of the sequential moment conditions, in which
the lagged levels of the explanatory variables xit are the instruments for the PSI transformations,
and the number of the sequential moment consitions grows as the number of time periods T
increases.5

5The sequential moment conditions are proposed by Holtz-Eakin et al. (1988) and Arellano & Bond (1991)
for the ordinary dynamic panel data model and Chamberlain (1992) and Wooldridge (1997) for the count panel
data model.
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In this paper, the GMM and EL estimators using the moment conditions (19) and (20)
are referred to as the “GMM(PHI)” and “EL(PHI)” estimators respectively, while those using
the moment conditions (21) and (22) are referred to as the “GMM(PSI)” and “EL(PSI)”
estimators respectively. As a control, the pooled maximum likelihood estimator (hereafter, the
“ML(POOL)” estimator) is used, which ignores the individual heterogeneity and accordingly
has the indigenous bias. The GMM and EL estimations are implemented by using the “R”
package “gmm” developed by Chaussé (2010), while the ML estimation is implemented by using
the “pscl” developed by Zeileis et al. (2008).6

4.3 Results

Monte Carlo results for the estimators assayed when T = 4 and 8 are shown in Table 1
and 2, respectively. It can be seen that the bias and rmse (root mean square error) for the
GMM and EL estimators dwindle in size as the cross-sectional size N increases, reflecting
the consistency, while the considerable upward bias of the inconsistent ML(POOL) estimator
remains unchanged. Figure 1 and 2 are the boxplots of the GMM and EL estimators for δ and
β when T = 4, respectively, while Figure 3 and 4 are those when T = 8. It can be seen that
the interquantile range (hereafter IQR) and whisker length become narrower and less standoff
outliers are found as the cross-sectional size N is larger.

When using the PSI transformations based on the mitigated assumptions, the EL estimator
overwhelmingly outperforms the GMM estimator whose small sample performance is poor in
the extreme, as is seen from the comparison of the performance of the EL(PSI) estimator
with that of the GMM(PSI) estimator. The smaller sizes of bias and rmse, narrower IQR and
whisker range, and less standoff outliers are recognizable for the EL estimator.7 One potential
explanation for them is that the GMM(PSI) estimator might suffer from the weak instruments
problem pointed out by Bound et al. (1995) and Staiger & Stock (1997). That is, it could be that
the lagged levels of the explanatory variables xit in the moment conditions (22) are the weak
instruments for the PSI transformations (9).8 It might be reckoned that the weak instruments
problem would be mollified by using the EL estimator instead of the GMM estimator in this
case. Another one is that the GMM(PSI) estimator (which is the two-step estimator) might
be afflicted with the higher-order bias characteristic of the GMM estimator shown by Newey
& Smith (2004), leading to its poor small sample performance, judging from the fact that it
uses many growing instruments for the PSI transformations as the number of time periods T
increases. In addition, Newey & Smith (2004) theoretically show that the higher-order bias of
the EL estimator is considerably smaller than that of the GMM estimator, which suggests that
the former small sample property is superior to the latter one, especially in using the increasing
number of the moment conditions, while the Monte Carlo evidences by Ramalho (2005) bear
out it. In fact, it is sure that the discrepancy of the small sample performances is large between
the GMM(PSI) estimator and the EL(PSI) estimator for the case with T = 8, compared to the
case with T = 4. The number of the moment conditions based on the PSI transformations is 9
when T = 4, while it is 35 when T = 8.

The observations for which (yit, yi,t−1) = (0, 0), (0, 1), or (1, 0) make no contribution to the
identification using the GMM and EL estimators, as is seen from the PHI and PSI transforma-
tions (i.e. (5) and (9)). In the DGP, rate of the above combinations of the dependent variables

6The functions “gmm()” and “el()” are used for the GMM and EL estimations in the “gmm” package (version
1.4–5), while the function “zeroinfl()” is used for the ML estimation in the “pscl” package (version 1.04.4).

7In the experiment using a different seed, the larger rmse of δ is found when N = 10000 than when N = 5000
for the GMM(PSI) estimator, although the boxplot exhibits the tendency of the incresing accuracy and precision
for the larger N . This is because a far standoff outliers is estimated in a replication.

8The weak instruments problem often materializes in analyses using the dynamic panel data model and count
panel data model (e.g. Blundell & Bond, 1998; Blundell et al., 2002).
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attains to about 70 percent for each replication, which is discarded in the estimations. It can be
said that these are the events peculiar to the ZIP model, behind which the mass generation of
zero values of count dependent variables lies. Accordingly, a considerable degree of sample sizes
would be needed for enhancing the accuracy and precision of the GMM and EL estimators,
which is reflected in the Monte Carlo results shown in Table 1 and 2 and Figure 1 to 4.

5 Conclusion

In this paper, the two types of moment conditions were proposed for consistently estimating
the parameters of interest in the fixed effects ZIP model in which zero count outcomes could
germinate from the Poisson part as well as from the logit part and both parts are equipped with
the fixed effects: the moment conditions for the case of slightly exogenous explanatory variables
in logit and Poisson parts and those for the case of slightly exogenous explanatory variables
in logit part and predetermined ones in Poisson part. Monte Carlo experiments indicated that
the large number of individuals would behooves for obtaining the accurate and precise GMM
and EL estimates. It is conceivable that this would be caused by the virtual decrease of sample
sizes contributing to the estimation, which is due to mass generation of zero count outcomes.

Appendix A

First, the following relationship is obtained from (1), (2) and (3):

E[(y2it − yit) | ψi, wt+1
i , ηi, x

t+1
i , vt−1

i ] = pitq
2
it. (A.1)

Multiplying (A.1) dated t by qi,t−1/qit gives

E[exp(−β ∆xit)(y
2
it − yit) | ψi, wt+1

i , ηi, x
t+1
i , vt−1

i ] = pitqitqi,t−1, (A.2)

while multiplying (A.1) dated t− 1 by qit/qi,t−1 gives

E[exp(β ∆xit)(y
2
i,t−1 − yi,t−1) | ψi, wti , ηi, xti, vt−2

i ] = pi,t−1qitqi,t−1. (A.3)

Next, the following relationship is obtained from (1) and (2):

E[yityi,t−1 | ψi, wt+1
i , ηi, x

t+1
i , vt−1

i ] = pitpi,t−1qitqi,t−1 + pitqitvi,t−1. (A.4)

Third, the following relationship holds for the logit probability:

tanh(δ ∆wit/2) = (pit − pi,t−1)/(pit + pi,t−1 − 2pitpi,t−1), (A.5)

using which Kitazawa (2012) constructs the first-order condition for the conditional maximum
likelihood estimator for the static fixed effects logit model developed by Rasch (1960, 1961)
and Chamberlain (1980). Multiplying the numerator and denominator of the right-hand side
of (A.5) by qitqi,t−1 gives

tanh(δ ∆wit/2) (pitqitqi,t−1 + pi,t−1qitqi,t−1 − 2pitpi,t−1qitqi,t−1) = (pitqitqi,t−1 − pi,t−1qitqi,t−1).
(A.6)

Finally, plugging (A.2), (A.3) and (A.4) into (A.6) and then taking the expectation con-
ditional on the information set (ψi, w

t
i , ηi, x

t
i, v

t−2
i ) for its both sides, the conditional moment

conditions (4) with (5) are obtained.
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Appendix B

As is the case with Appendix A, the following four relationships are recognizable:

E[(y2i,t−1 − yi,t−1) | ψi, wti , ηi, xt−1
i , vt−2

i ] = pi,t−1q
2
i,t−1, (B.1)

E[exp(−2β ∆xit)(y
2
it − yit) | ψi, wt+1

i , ηi, x
t
i, v

t−1
i ] = pitq

2
i,t−1, (B.2)

E[exp(−β ∆xit)yityi,t−1 | ψi, wt+1
i , ηi, x

t
i, v

t−1
i ] = pitpi,t−1q

2
i,t−1 + pitqi,t−1vi,t−1, (B.3)

tanh(δ ∆wit/2) (pitq
2
i,t−1 + pi,t−1q

2
i,t−1 − 2pitpi,t−1q

2
i,t−1) = (pitq

2
i,t−1 − pi,t−1q

2
i,t−1). (B.4)

Plugging (B.1), (B.2) and (B.3) into (B.4) and then taking the expectation conditional on
the information set (ψi, w

t
i , ηi, x

t−1
i , vt−2

i ) for its both sides, the conditional moment conditions
(8) with (9) are obtained.
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Table 1: Monte Carlo results for the fixed effects ZIP model, T = 4

N = 1000 N = 5000 N = 10000
bias rmse bias rmse bias rmse

GMM(PHI) δ 0.128 0.776 0.044 0.276 0.029 0.198
β 0.003 0.110 0.002 0.054 0.001 0.039

GMM(PSI) δ 0.935 43.754 0.064 0.399 0.039 0.242
β -0.092 0.277 -0.029 0.133 -0.014 0.091

EL(PHI) δ 0.093 0.632 0.025 0.273 0.016 0.198
β 0.004 0.113 0.002 0.056 0.001 0.041

EL(PSI) δ 0.098 0.642 0.030 0.276 0.019 0.200
β -0.050 0.334 -0.006 0.134 0.000 0.090

ML(POOL) δ 0.343 0.350 0.342 0.343 0.341 0.342
β 0.476 0.479 0.477 0.478 0.477 0.478

Notes: 1) The initial consistent estimates used for the GMM estimations are the GMM estimates
obtained by using the identity matrix as the weighting matrix. 2) Inappropriate replications (i.e.
the non-convergence replications) are eliminated in calculating the statistics. Their number is zero
or extremely small. 3) The values of the Monte Carlo statistics are obtained using the true values
of the parameters of interest as the starting values in the optimization for each replication. The
values of the statistics obtained using the true values are almost the same as those obtained using
two different types of the starting values. 4) The starting values of Lagrange multipliers are zero
in the optimization. 5) The Monte Carlo mean of proportions of zeros for the count dependent
variables is about 70 percent.
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Figure 1: Monte Carlo boxplots of the GMM and EL estimates for δ, T = 4
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Figure 2: Monte Carlo boxplots of the GMM and EL estimates for β, T = 4
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Table 2: Monte Carlo results for the fixed effects ZIP model, T = 8

N = 1000 N = 5000 N = 10000
bias rmse bias rmse bias rmse

GMM(PHI) δ 0.085 2.633 0.046 0.212 0.032 0.131
β 0.001 0.073 0.001 0.035 0.000 0.026

GMM(PSI) δ 1.982 106.559 0.043 3.052 0.061 1.761
β -0.114 0.222 -0.032 0.080 -0.017 0.051

EL(PHI) δ 0.082 0.395 0.027 0.177 0.018 0.130
β 0.003 0.072 0.001 0.036 0.000 0.027

EL(PSI) δ 0.119 0.440 0.040 0.178 0.025 0.129
β 0.015 0.116 0.005 0.055 0.003 0.040

ML(POOL) δ 0.342 0.346 0.341 0.342 0.341 0.342
β 0.476 0.479 0.477 0.478 0.477 0.477

Notes: 1) The initial consistent estimates used for the GMM estimations are the GMM estimates
obtained by using the identity matrix as the weighting matrix. 2) Inappropriate replications (i.e.
the non-convergence replications) are eliminated in calculating the statistics. Their number is zero
or extremely small. 3) The values of the Monte Carlo statistics are obtained using the true values
of the parameters of interest as the starting values in the optimization for each replication. The
values of the statistics obtained using the true values are almost the same as those obtained using
two different types of the starting values. 4) The starting values of Lagrange multipliers are zero
in the optimization. 5) The Monte Carlo mean of proportions of zeros for the count dependent
variables is about 70 percent.
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Figure 3: Monte Carlo boxplots of the GMM and EL estimates for δ, T = 8
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Figure 4: Monte Carlo boxplots of the GMM and EL estimates for β, T = 8
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